CV

Islamic Azad University, Isfahan (Khorasgan) Branch

1-PERSONAL INFORMATION

First Name : Bahador Last Name : Fani

E-mail: bahador.fani@gmail.com,b.fani@khuisf.ac.ir

Work Address: Islamic Azad University, Isfahan (Khorasgan) Branch, Esfahan

Academic Rank: Associate Professor

2-EDUCATION BACKGROUND

Academic Degree	Education Field University		Country	Year
B.Sc	B.Sc in Electrical Engineering	Isfahan University of Technology (IUT)	Iran	2003
M.Sc	M.Sc in Power Systems	Isfahan University of Technology (IUT)	Iran	2005
Ph.D	Ph.D in Power Systems	Isfahan University of Technology (IUT)	Iran	2009

3-EDUCATIONAL EXPERIENCE

Row	Specialized Courses Taught	Degree
1	Reactive power control:26 times	MSc
2	Power quality: 20 times	PhD
3	Distributed generation and microgrid: 12 times	MSc
4	Power system analysis I: 30 times	BSc
5	Power system analysis II: 40 times	BSc
6	Power system protection:16 times	BSc
7	FACTS: 18 times	PhD
8	Smart Electrical Energy Grids : 26 time	PhD
9	Advanced power system protection: 26 times	PhD
10	Power Generation Operation and Control: 26 times	MSc
11	Power System Lab: 30 times	BSc
12	Electrical Machines II: 4 times	BSc
13	Special topics in power system analysis: 2 times	BSc
14	Digital Protection of Power Systems: 3 time	PhD

4-RESEARCH INTERESTS

Row	Fields of Investigation and Specialized
1	Distributed Generation and Microgrid
2	Power Quality
3	FACTS and Custom Power
4	Smart grids
5	Power system protection
6	Power system dynamics
7	Digital Protection of Power Systems

5-RESEARCH ACTIVITIES

5-1) Paper Published in Journals

Row	Article Title	Journal Name	Year	Issue/Volume	Article Printed Pages
1	A Charger Current Limiting Scheme to Improve Protection Coordination of Electric Vehicle Integrated Distribution Systems	International Transactions on Electrical Energy Systems	2024		
2	Stochastic Economic Dispatch of a Power System with Solar Farm Considering Generation Flexibility and Reliability	International Journal of Energy Research	2024		
3	Bidirectional DC-DC converter with low switch voltage stress	Journal of Power Electronics	2024		1-11
4	Regulation of bus voltage on DC microgrid using hybrid technique through charger/discharger storage	Journal of Energy Storage	2024		
5	A New SEPIC-Zeta Bidirectional Converter With High Efficiency for Renewable Energy Systems	Hydrogen, Fuel Cell & Energy Storage	2024		
6	A Protection Scheme Based on Modified Curve of Overcurrent Relay for Distribution Systems with High Penetration Level of Electric Vehicles	Iranian Electric Industry Journal of Quality and Productivity	2024		
7	Providing a Protection Strategy to Reduce the Impact of Distributed Generation in Electrical Energy Distribution Systems	Iranian Electric Industry Journal of Quality and Productivity	2024		
8	Fuse Saving Coordination Scheme for Active Distribution Systems: State-of-the-Art and A Novel Quasi-Voltage Current Based Scheme	IET Generation, Transmission & Distribution	2024		
9	An Application of Lossless Snubber Circuit for Flyback- Forward Boost Converter with Leakage Inductor Energy Recovery	Energy Engineering and Management	2024		
10	A New Transformerless Step-up Converter with Low Input Current Ripple for Photovoltaic System	Technovations of Electrical Engineering in Green Energy System	2024		
11	A New High Step-down Converter with Low Ripple Current and High Efficiency	AUT Journal of Electrical Engineering	2024		
12	A New Interleaved High Step-up Converter with Cancellation	Journal of Novel Research on Smart Power	2024		

	Input Current Ripple and Soft Switching	System	1	T	
13	Analysis and Simulation of Island Mode Operation in Inverter-	Journal of Simulation and Analysis of Novel	2023		
	Based Microgrids with Voltage Droop Controllers	Technologies in Mechanical Systems			
14	Improved Power Sharing and Energy Management Platform in	Sustainable Cities and Society	2023		98,
	Microgrid Considering Stochastic Dynamic Behavior of the				104826
15	Electric Vehicles A Three-Stage Multi-Agent-Based Peer-to-Peer Method for	IET Renewable Power Generation	2023	17 (5)	1255-
13	Fault Isolation of High Distributed Generation Penetrated	TET Reflewable Power Generation	2023	17 (3)	1255-
	Distribution Networks				1200
16	Fuse Maintenance to Solve Protection Problems in Active	Signal Processing and Renewable Energy	2023		
	Distribution Networks in Presence of Distributed Generation				
	Sources				
17	An Adaptive Fuse-Saving Protection Scheme for Active	International Journal of Electrical Power and	2023		
18	Distribution Networks Analysis and Implementation of Second-Order Step-Up	Energy Systems Journal of Solar Energy Research (JSER)	2023		
10	Converter Using Winding Cross Coupled Inductors for	Journal of Solar Energy Research (JSER)	2023		
	Photovoltaic Applications				
19	Distributed Generations Management to Restore Protective	Journal of Intelligent Procedures in Electrical	2023		
	Coordination Using Multi-Agent Systems	Technology (JIPET)			
20	Providing a Protection Method to Support Distributed	Iranian Electric Industry Journal of Quality	2023	12 (1)	22-30
2.1	Generation Against Transient Voltage Instability	and Productivity	2022		
21	A Protection Methodology for Supporting Distributed	2023 IEEE 17th International Symposium on	2023		
	Generations with Respect to Transient Instability	Applied Computational Intelligence and Informatics			
22	Maintaining Fuse in the Presence of Distributed Generation	2023 IEEE 17th International Symposium on	2023		
	Sources in the Distribution Network to Improve Protection	Applied Computational Intelligence and			
	System	Informatics			
23	Improved Dynamic Performance in Interconnected Power	International Journal of Smart Electrical	2023		
2.4	System Using Secondary Frequency Control	Engineering	2022		
24	An Online Free Penetration Multi-Stage Fuse Saving Protection	Iranian Electric Industry Journal of Quality and Productivity	2023		
25	Scheme in Distribution Systems with Photovoltaic Sources Inverter-Based Islanded Microgrid: A Review on Technologies	e-Prime - Advances in Electrical	2023		
23	and Control	Engineering, Electronics and Energy	2023		
26	Analysis and Implementation of High Step-Up SEPIC	Hydrogen, Fuel Cell & Energy Storage	2023		
	Converter Without Coupled Inductor for High Voltage				
	Applications				
27	Secondary Frequency Control for Improved Dynamic Performance in Interconnected Power System	Journal of Simulation and Analysis of Novel	2023		
28	Intelligent Protection Scheme of Electrical Energy Distribution	Technologies in Mechanical Systems Computational Intelligence in Electrical	2023		
20	Systems in the Presence of Distributed Generation Sources	Engineering	2023		
	Using Agent-Based Distributed Controller				
29	A Multi-Agent Based Protection in Distribution Networks	Energy Reports	2023		
	Including Distributed Generations				
30	Coordination of Protection Equipment in Synchronous	Journal of Intelligent Procedures in Electrical	2023		
	Generator-Based Microgrids with Regard to Maintaining First Swing Stability	Technology (JIPET)			
31	A New Interleaved High Step-Down Converter with Improved	Journal of Renewable Energy and	2023		1
	Performance and High Efficiency	Environment			
32	Synchronous Generator	Signal Processing and Renewable			
	Excitation System	Energy			
	Controller Design Using		2021	۵(۴)	94-
	Feedback Linearization				9 7
	and H-Infinity Methods				
2.5					
33	Distributed Generations Management to	Journal of Intelligent Procedures in			
	Pastora Protactive Coordination Using Multi Acous	Electrical Technology	2024	15-90	126
	Restore Protective Coordination Using Multi-Agent Systems		2024	13-16	120
	2) 5001115				142
					142
34	Providing a protection method to supportdistributed	Iranian Electric IndustryJournal of			
	generation against transient voltage instability	Quality and Productivity			
			٣٢.)1(٢1	٠٣_
			۲		77

35	Coordination of protection equipment in synchronous generator-based microgrids withregard to maintaining first swing stability	Journal of Intelligent Procedures in ElectricalTechnology (JIPET)	2022	14(54	1- 14
36	Hierarchical Protection Scheme Based on Multi-Agent Systems in Distributed Networksin the Presence of Distributed Generation Resources	Journal of Iranian Associationof Electrical and Electronics Engineers	2021)۲(٨١	9.1 _49
37	Transient Stability Constraints and ProtectiveCoordination in Distributed Resource Distribution Systems	Journal of Novel Researcheson Electrical Power	17.	10(2)	35- 42
38	Preventing of Bifurcation Consequences in VSI-Dominated Micro-grids Using Virtual Impedance Theory	Computational Intelligence inElectrical Engineering	2021)٣(٢١	· ۲۱ - · · · ·
39	Reduction of voltage harmonics by means of a droop controller in parallel operation of inverters	Iranian Journal of Electricaland Computer Engineering	2019	17-2	V•1 V9_
40	Isolation Detection Using Decision TreeAlgorithm in Micro-Grids with Variety of Distributed Production Resources	Journal of Novel Researcheson Electrical Power	2019	٣-٨	-٣۶ ٣۵
41	Adaptive Coordination of Fuse – Recloser in a Distribution System with High PV Penetration	Journal of Intelligent Procedures in Electrical Technology (JIPET)	91. Y	۵۳9-	-A1
42	An adaptive fuse-saving protection scheme for active distribution networks	International Journal of Electrical Power and Energy Systems	2023	144	10 862 5
43	Improved Power Sharing and Energy Management Platform in Microgrid Considering Stochastic Dynamic Behavior of the Electric Vehicles	Sustainable Cities and Society	2023	98	1048 26
44	Simulation of a PV Connected to an ElectricalEnergy Distribution Network with Internal Current Loop Control and Voltage Regulator	International Journal of SmartElectrical Engineering	2023	12(1)	23-30
45	A three-stage multi-agent-based peer-to-peermethod for fault isolation of high distributed generation penetrated distribution networks	IET Renewable PowerGeneration	2023	17(5)	1255- 1266
46	Analysis and Implementation of Second-OrderStep-Up Converter Using Winding Cross Coupled Inductors for PhotovoltaicApplications	Journal of Solar EnergyResearch (JSER)	2023	8(2)	1516- 1525

		of Islamic Azad University, Isfahan (Khorasgan)	Diantil	I	Т
47	Improved Dynamic Performance in Interconnected Power System UsingSecondary Frequency Control	International Journal of Smart Electrical Engineering	2023	12(2)	127- 133
48	Providing a protection method to supportdistributed generation against transient voltage instability	نشریه کیفیت و بهره وري صنعتبرق ایران	2023	12(1)	21-30
49	Intelligent protection coordination restorationstrategy for active distribution networks	IET Generation, Transmission	77.7	16(3)	397- 413
50	Secondary frequency control for improveddynamic performance in interconnected	Journal of Simulation and Analysis of Novel	2022	11(2)	15.51
	power system	Technologies in MechanicalEngineering	2022	14(3)	47-54
51	A multi-agent based protection in distributionnetworks including distributed generations	Energy Reports	2022	8(14)	163- 174
52	Improved Droop Control Method for ReactivePower Sharing in Autonomous Microgrids	Journal of Renewable Energyand Environment (JREE)	2022	9(3)	1-9
53	Optimal Determination of Photovoltaic Penetration Level Considering ProtectionCoordination	IEEE SYSTEMS JOURNAL	2022	16(2)	2121- 2124
54	An adaptive protection coordination schemefor microgrids with optimum PV resources	Journal of Cleaner Production	2022	340	1307 23
55	Analysis and Simulation of Inverter-BasedMicrogrid Droop Control Method in IslandOperation Mode	Signal Processing and Renewable Energy	2022	6	65-81
56	Dynamic Behavior Improvement of Control System in Inverter-Based Island Microgrid by Adding a Mixed Virtual Impedance Loop to Voltage Control Loop	International Journal of Smart Electrical Engineering	2022	11(1)	27-34
57	Achieving the exact equivalent circuit of alarge-scale transformer winding using an improved detailed model for partial dischargestudy	International Journal of Electrical Power	2022	134	1-13
58	An offline three-level protection coordinationscheme for distribution systems considering transient stability of synchronous distributedgeneration	International Journal of Electrical Power	2021	131	1-12
59	Virtual Impedance-Based Droop Control Scheme to Avoid Power Quality and StabilityProblems in VSI-Dominated Microgrids	IEEE Access	2021	9	14499 9- 1450 11

Row	Article title	Journal Name	Year	Issue/Volume	Article Printed Pages
60	Multi-Agent System-Based Hierarchical Protection Scheme for Distribution Networks With High Penetration of Electronically- Coupled DGs	IEEE Access	2021	9	102998- 103018
61	Protection of LVDC Microgrids in Grid- Connected and Islanded Modes Using Bifurcation Theory	IEEE Journal of Emerging and Selected Topics in Power Electronics	17.7	9(3)	2597-2604
62	Adaptive scheme protecting renewable- dominated micro-grids against usual topology-change events	IET Renewable Power Generation	2021	15(12	2686-2698
63	A Partial Shading Detection Algorithm for Photovoltaic Generation Systems	Journal of Solar Energy Research (JSER)	2021	6(1)	678-687
64	A first swing stability improvement approachin microgrids with synchronous distributed generators	International Transactions On Electrical Energy Systems	2021	31(4)	1-21
65	A multi-agent solution to multi-thread protection of DG-dominated distribution networks	International Journal of Electrical Power	2021	130	1-13
66	A novel adaptive protection coordination scheme for radial distribution networks in thepresence of distributed generation	International Transactions On Electrical Energy Systems	2021	31(3)	1-22
67	Power System Dynamic Stability Improvement Using PSS Equipped with Microcontroller	The International Journal of Smart Electrical Engineering (IJSEE)	17.7	10(2)	67-76
68	An Off-Line Algorithm for Fuse-Recloser Coordination in Distribution Networks with PV Resources	International Transactions on Electrical Energy Systems issn	2020	30(9)	1-16
69	A visually driven nonlinear droop control for inverter-dominated islandedmicrogrids	Electrical Engineering	2020	102	1207–1222
70	A Distributed Secondary Control Approach for Inverter-Dominated Microgrids with Application to Avoiding Bifurcation-Triggered Instabilities	IEEE Journal of Emerging and Selected Topics in Power Electronics	2020	8(4)	3361-3371
71	Multi agent-based strategy protecting the loop-based micro-grid via intelligent electronic device-assisted relays	IET Renewable Power Generation	2020	14(19	4132 – 4141
72	Protection of Converter-Interfaced Microgrids Using Modified Short-Time Correlation Transform	IEEE SYSTEMS JOURNAL	2020	14 (4	5172-5175

73	Fuse saving scheme in highly photovoltaic- integrated distribution networks	International Transactions on Electrical Energy Systems	2020	30	1-23
74	Decentralized Synergistic Control of Multi- Machine Power System Using Power System Stabilizer	Signal Processing and Renewable Energy	. ۲ . ۲	4(4)	1-21
75	Fast Islanding Detection for Distribution System including PV using Multi-Model Decision Tree Algorithm	Majlesi Journal of Electrical Engineering	. ۲ . ۲	14(4)	29-38
76	A protection strategy for inverter-interfaced islandedmicrogrids with looped configuration	Electrical Engineering	2019	101-2	1059-1073
77	Day-Ahead Capacity Estimation and Power Management of a Charging Station based on Queuing Theory	IEEE Transactions on Industrial Informatics	2019	15-10	5561-5574
78	Simultaneous Tuning of Static Synchronous Series Compensator and Multi-Band Power System Stabilizers to Mitigate Sub- Synchronous Resonances in Power S	Majlesi Journal of Electrical Engineering	2019	13-4	89-98
79	A bi-level multi agent based protection scheme for distribution networks with distributed generation	INTERNATIONAL JOURNALOF ELECTRICAL POWER	2019	112	209-220
80	Statistical sensorless short-circuit fault detection algorithm for photovoltaic arrays	Journal of Renewable and Sustainable Energy	2019	11-5	1-13
81	Local penetration-free control approach against numerous changes in PV generationlevel in MAS-based protection schemes	IET Renewable Power Generation	2019	13-7	1197-1204
82	An Offline Penetration-Free Protection Scheme for PV-Dominated Distribution Systems	Electric Power Systems Research	2018	157	1-9
83	An enhanced decentralized reactive power sharing strategy for inverter-based microgrid	International Journal of Electrical Power	2018	98	531–542
84	An adaptive current limiting strategy to prevent fuse-reclosermiscoordination in PV- dominated distribution feeders	Electric Power Systems Research	2018	157	177-186
85	Protection coordination scheme for distribution networks with high penetration of photovoltaic generators	IET Generation, Transmission	2018	12-8	1802-1814
86	Adaptive protection coordination scheme against the staircase fault current waveformsin PV-dominated distribution systems	IET Generation Transmission	2018	12-9	2065-2071
87	A fault-clearing algorithm supporting the MAS-based protection schemes	International Journal of Electrical Power	2018	103	257–266
88	Adaptive complex virtual impedance control scheme for accurate reactive power sharing of inverter interfaced autonomous microgrids	IET Generation Transmission	2018	12-22	6021 – 6032

89	Advanced localized reactive power sharing in microgrids	Electric Power Systems Research	2017	151	136-148
90	Implementation of Soft Switching Forward Converter with Self-Driven Synchronous Rectificatin	IEICE Transactions on Electronics	2015	E98-C	963-970
91	A New Zero Voltage Switching Bidirectional DC-DC Converter without any Auxiliary Switch	MITTEILUNGEN KLOSTERNEUBURG	2015	65	309-327
92	Transient Performance Iprovement of Wind Turbines with Doubly Fed Induction Generators Using Fractional Order Control Strategy	Journal of Intelligent Procedures in Electrical Technology	2014	4	17-28
93	Coordinated Control of FACTS Devices by Using ADALINE Neural Network to Enhance the Transient Stability of Power System	Intelligent Procedures in Electrical Technology	2012	3	27-40
94	A New Asymmetrical DC-DC Converter with High Voltage Gain	Journal of International Review of Electrical Engineering	2011	7	1-5
95	A New Soft Switching Current-Fed Converter with Voltage Lifting	International Review of Electrical Engineering	2011	6	1-5
96	Transformer Differential Protection Using Geometrical Structure Analysis of Waveforms	Electric Power Components and Systems	2011	39	204-224
97	A runs test-based method for discrimination between internal faults and inrush currents in power transformers	International Transactions on Electrical Energy Systems	2011	21	1392–1408
98	A frequency curves analysis-based method for transformers differential protection	International Transactions on Electrical Energy Systems	2011	21	987–996
99	Waveform feature monitoring scheme for transformer differential protection	Journal of Zhejiang University-SCIENCE A	2011	12	116-123
100	A New Isolated DC-DC Converter with Active Clamp Circuit	International Review of Electrical Engineering	2010	5	1-5
101	Design and Implementation of a New CurrentFed Converter With Zero Current Switching Conditions	Intelligent Procedures in Electrical Technology	2010	1	11-18
102	A new isolated bidirectional buck-boost DC-DC converter	Journal of International Review of Electrical Engineering	2010	4	1-5
103	A New Hard Switching Bidirectional Converter With High Power Density	Intelligent Procedures in Electrical Technology	2010	1	51-56
104	Harmonic Compensation and Microgrid Voltage and Frequency Control based on Power Proportional Distribution with Adaptive Virtual Impedance Method	Journal of Intelligent Procedures in Electrical Technology	2023	14-53	33-60

		all CV of Islamic Azad Offiversity, Isla	man (runora	ogan, Branen		
105	An Intelligent Multi-Agent Based Approach for Protecting Distribution Networks	Technovations of Electrical Engineering in Green Energy System	2022	1(1)	36-62	
106	Improvement of Conventional Droop Methods Performance During the Fault Occurrence in an Islanded Micro-Grid Using the Concept of Virtual Impedance	Technovations of Electrical Engineering in Green Energy System	2022	1(1)	13-35	
107	Adaptive Protection Based on Intelligent Distribution Networks with the Help of Network Factorization in the Presence of Distributed Generation Resources	Energy Engineering	2022	12(2)	34-51	
108	Mid-Term Residential Load Forecasting Basedon Feature Selection Using Neighborhood Component Analysis	Computational Intelligence in Electrical Engineering	7.71	۳۱(۲)	7.1_411	
109	Coordinated Protection Scheme Based on Virtual Impedance Control for Loop-Based Microgrids	Journal of Intelligent Procedures in Electrical Technology (JIPET)	2021	12-46	15-32	
110	Improved Protection System for Distribution Network to Maintain Fuse in the Presence of Distributed Generation Resources	Journal of Novel Researcheson Electrical Power	2020	(2)9	29-37	
111	An Online Free Penetration Multi-Stage Fuse Saving Protection Scheme in Distribution Systems with Photovoltaic Sources	Iranian Electric Industry Journal of Quality and Productivity	2020	9(2)	24-35	
112	A local power control scheme for electronically interfaced distributed generators in islanded microgrids	Iranian Electric Industry Journal of Quality and Productivity	2020	8(3)	47-58	
113	A New Adaptive Method for Protection of Distribution System with High Penetration of Distributed Generations	TABRIZ JOURNAL OF ELECTRICAL ENGINEERING(TJEE)	2020	49(4)	1533-1545	
114	Scheduling and Stochastic Capacity Estimation of an EV Charging Station with PV Rooftop Using Queuing Theory and Random Forest	Journal of Iranian Associationof Electrical and Electronics Engineers	2019	16-1	31-39	
115	Isolation Detection Using Decision Tree Algorithm in Micro-Grids with Variety of Distributed Production Resources	Journal of Novel Researcheson Electrical Power	2020	8-3	53-63	
116	Virtual Impedance–Based Adaptive Droop Control to Improve Reactive Power Sharingfor Inverter-Based Microgrids	Energy Engineering	2019	9-1	26-35	
117	Improve the Reactive Power Sharing by Usesto Modify Droop Characteristics in Autonomous Microgrids	Energy Engineering	2020	9-3	64-71	

Row	Article title	Journal Name	Year	Issue/Volume	Article Printed Pages
118	A New Method for Controlling Microgrids Protection Settings with the High Penetrationof Distributed Generation	Computational Intelligence in Electrical Engineering	2020	10(4)	70-90
119	A New intelligent method of Fuse – Recloser Coordination in a Distribution System with High PV Penetration Rates	Computational Intelligence in Electrical Engineering	2018	9-1	48-63
120	Improved Reactive Power Sharing in Islanded Micro Grids using Adaptive Virtual Impedance	Computational Intelligence in Electrical Engineering	2019	9-4	12-26
121	Adaptive Coordination of Fuse – Recloser in a Distribution System with High PV Penetration	Journal of Intelligent Procedures in Electrical Technology (JIPET)	2017	8-30	23-32
122	Investigation and Improvement of High Step-up DC-DC Converters for PV Module Applications	Journal of Intelligent Procedures in Electrical Technology (JIPET)	2017	7-28	33-41
123	Reliability Evaluation of Power System SVC Types Using a Markov Chain	Journal of Intelligent Procedures in Electrical Technology	2015	6-22	13-22
124	Transient Performance Improvement of Wind Turbines with Doubly Fed Induction Generators Using Active Damping Control Strategy	Journal of Intelligent Procedures in Electrical Technology	2016	6-24	3-16
125	Short-Term Load Forecasting of Distribution Power System for Weekdays Using Old Data	Journal of Intelligent Procedures in Electrical Technology	2014	5	25-36
126	Evaluation of the Trajectory Sensitivity Analysis o f the DFIG Control Parameters in Response to Changes in Wind S peed and the Line Impedance Conne	Journal of Intelligent Procedures in Electrical Technology (JIPET)	2015	5	37-54
127	Stability of nonlinear load electric arc furnacesin the presence of reactive power sources	Journal of Intelligent Procedures in Electrical Technology (JIPET)	2014	5	41-48
128	Stability Analysis and Control of DFIG Based Wind Turbine Using FBC Strategy	Journal of Intelligent Procedures in Electrical Technology	2013	4	31-42

5-2) Papers Presented at the Conference

Row	Article title	Conference Name	Conference Location	Year
1	A new method of protection coordination between fuses and Recloser In distributed systems, including distributed generators	5th National Conference New Idea On Electrical Engineering	Islamic Azad University khorasgan	2016
2	A comparative relay In order to maintain fuse In distribution networks In the presence of DGs	5th National Conference New Idea On Electrical Engineering	Islamic Azad University- khorasgan	2016
3	Capacitor placement based on power loss estimationin electric power distribution networks	National Conference on New Idea in Electrical Engineering	Islamic Azad University, khorasgan branch	2015
4	Improve Control of Active and Reactive Power Grid Wind Turbine DFIG			2015
5	Dynamic Security Assessment of DFIG Wind Turbines Using Trajectory Sensitivity for Line Impedance Changes	Third National Conference on New Idea in Electrical Engineering	Islamic Azad University, khorasgan branch	2015
6	Dynamic Security Assessment of DFIG Wind Turbines Using Trajectory Sensitivity for Wind Variation Changes	Third National Conference on New Idea in Electrical Engineering	Islamic Azad University, khorasgan branch	2015
7	The Influence of Rotor Controller Parameters on Dynamic Behavior Analysis of DFIG Wind Turbines	Third National Conference on New Idea in Electrical Engineering	Islamic Azad University, khorasgan branch	2015
8	Transient Performance Improvement of DFIG Wind Turbines Using Active Damping Method	Third National Conference on New Idea in Electrical Engineering	Islamic Azad University, khorasgan branch	2015
9	STATCOM controller design based on flatness technique	National Conference on New Idea in Electrical Engineering	Islamic Azad University, khorasgan branch	2015
10	Investigation of applications of flatness technique in SMIB	National Conference on New Idea in Electrical Engineering	Islamic Azad University, khorasgan branch	2015
11	Three-Phase Fault Direction Detection of Distribution Systems, Including Distributed Generation Sources Based on DFIG	4th National conference on New Idea in Electrical Engineering	Islamic Azad University, khorasgan branch	2015
12	fault Analysis Algorithms in Distributed Systems in the Photovoltaic Cells	National Conference on New Idea in Electrical Engineering	Islamic Azad University, khorasgan branch	2015

5-3) Completed Research Plans

Row	Title	Responsibility	Project Kind
1	Design and manufacturing of polymer insulators mechanical routine test system in distribution and sub transmission voltage level	Co-Worker	External Grant

5-6) Awards and Honors

Row	Institution	Title	Festival	Date	Reference Award Announcement
1	Najafabad Branch, Islamic Azad University	Best University Researcher Award 2021		2021	
2	Isfahan University of Technology	1 st rank in Ph.D. graduate students		2011	

5-7) Lecturer Of Workshop

Row	Title	Date

6-EXECUTIVE EXPERIENCE

Row	Title Executive	Year
1	Head of Student Scientific Association	2011
2	Technical reviewer for Electric Power Components and Systems	2009
3	Technical reviewer for IEEE Transactions on Power Delivery	2010
4	Technical reviewer for International Transactions on Electri	2010
5	Technical reviewer for International Journal of Electrical P	2010
6	Technical reviewer for Electric Power Systems Research	2010
7	Technical reviewer for IET Generation, Transmission	2011